Microbial assimilation of hydrocarbons. II. Fatty acids derived from 1-alkenes.
نویسندگان
چکیده
The utilization of 1-alkenes by Micrococcus cerificans was investigated with respect to characteristic fatty acid profiles resulting from growth at the expense of these substrates. Saturated fatty acids containing even numbers of carbon atoms were produced from 1-dodecene and 1-tetradecene. Unsaturated fatty acids related to the parent alkene were not detected. The fatty acid profile from 1-pentadecene utilization resulted in the identification of 14-pentadecenoic acid, indicating preferential methyl-group attack. Studies with 1-hexadecene and 1-octadecene indicated simultaneous methyl-group and double-bond attack. Omega-Unsaturated fatty acids related to carbon number of parent alkene and odd-carbon fatty acids one carbon less than the substrate molecule were identified. A mechanism involving double bond epoxidation and oxidative cleavage was supported by measuring the release of formaldehyde. It appears that a dichotomous mechanism is functional in the assimilation of higher carbon number alkenes.
منابع مشابه
Microbial‐based motor fuels: science and technology
The production of biofuels via microbial biotechnology is a very active field of research. A range of fuel molecule types are currently under consideration: alcohols, ethers, esters, isoprenes, alkenes and alkanes. At the present, the major alcohol biofuel is ethanol. The ethanol fermentation is an old technology. Ongoing efforts aim to increase yield and energy efficiency of ethanol production...
متن کاملMicrobial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase.
Aliphatic medium-chain 1-alkenes (MCAEs, ∼10 carbons) are "drop-in" compatible next-generation fuels and precursors to commodity chemicals. Mass production of MCAEs from renewable resources holds promise for mitigating dependence on fossil hydrocarbons. An MCAE, such as 1-undecene, is naturally produced by Pseudomonas as a semivolatile metabolite through an unknown biosynthetic pathway. We desc...
متن کاملMicrobial assimilation of hydrocarbons: phospholipid metabolism.
An analysis of the turnover of the major phospholipids of Micrococcus cerificans growing or nongrowing cultures. The turnover rates of (14)C-PE and (14)C-PE were 61.5% of the total phospholipid, exhibited no significant rate of turnover in either growing or nongrowing cultures. The turnover rates of PE-(14)C and PE-(32)P were 3.2% per hr and 1.2% per hr, respectively. Phosphatidylglycerol (PG) ...
متن کاملAssembly of lipase and P450 fatty acid decarboxylase to constitute a novel biosynthetic pathway for production of 1-alkenes from renewable triacylglycerols and oils
BACKGROUND Biogenic hydrocarbons (biohydrocarbons) are broadly accepted to be the ideal 'drop-in' biofuel alternative to petroleum-based fuels due to their highly similar chemical composition and physical characteristics. The biological production of aliphatic hydrocarbons is largely dependent on engineering of the complicated enzymatic network surrounding fatty acid biosynthesis. RESULT In t...
متن کاملMicrobial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria.
Cell-free particulate fractions derived from methylotrophic bacteria catalyze the oxygen- and reduced nicotinamide adenine dinucleotide-dependent epoxidation of alkenes and hydroxylation of alkanes. Evidence presented indicates that the hydroxylation and epoxidation reactions are catalyzed by the same or a similar metal-containing monooxygenase.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 95 6 شماره
صفحات -
تاریخ انتشار 1968